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Quantum mechanics of charged particles near a plasma 
surface 

G Barton 
School of Mathematical and Physical Sciences, University of Sussex, Brighton, BN1 9QH, 
UK 

Received 26 November 1976 

Abstract. We consider the interaction between a quantized model of a semi-infinite plasma 
and a charged non-relativistic particle outside it, allowing fully for relativistic retardation in 
the electromagnetic field. The choice of gauge, which in the past has occasioned difficulty 
and imprecision, is elucidated. The Hamiltonian is written down in the strict Coulomb 
gauge having div A = 0 everywhere. It is then transformed canonically to a more popular 
gauge where divA has a &function singularity on the interface, and where the scalar 
potential is zero in absence of the particle. The effective interaction (‘dynamic image 
potential’) is evaluated to second order in u/o,Z but exactly in w , Z / c ;  (U is the particle 
velocity, Z is distance to interface, op is the plasma frequency). This complements the 
standard non-relativistic results which hold to all orders in v/o,Z but only in the limit 
wpZ/c +O. Contrary to some suggestions, the dominant interaction (when w,Z/c 3 1 and 
u / c  << 1) is just the image potential -e2/4Z; the leading corrections to this are given. 

1. Introduction 

The interaction between macroscopic surfaces and systems of charged particles can be 
considered from at least two distinct though complementary points of view; first, as a 
problem in condensed-state physics, namely to generalize the elementary image 
potential by taking account of surface structure and of the excitations of the medium; 
and second, as in the present paper, as a problem in quantum electrodynamics. The first 
approach suggests a non-relativistic treatment; by contrast, in the second approach it 
is more natural to treat at least the electromagnetic field relativistically (Maxwell’s 
equations and Lorentz force rather than just Poisson’s equation and the Coulomb 
force). From the second viewpoint, systems consisting of charged particles are affected 
by proximity to a medium because they are coupled to the quantized electromagnetic 
field, whose normal modes in turn are affected by the boundary conditions at the 
surface. In the simplest case the medium occupies the half-space z s 0 bounded by the 
x y  plane. In previous papers we have considered such problems for a perfect conductor 
(Barton 1974, to be referred to as I) and for a simple model of a plasma (Babiker and 
Barton 1975, to be referred to as II), the latter as a first step to allow for the effects of 
field penetration into the mediumt. In common parlance, we used a quantized 

t Experience shows that the safest first approach to this class of problems is the treatment of the simplest 
explicitly soluble model which incorporates the features of interest; discussions based from the outset on very 
general formalisms are apt to obscure or even mask a mishandling of the basic physics. Once their assertions 
can be checked against more transparently obtained results, such formalisms of course come into their own 
in the treatment of more realistic cases. 
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602 G Barton 

hydrodynamic jellium model of a dispersionless plasma, treated in linearized approxi- 
mation and with infinite-barrier boundary conditions; then the dielectric function is 

€ ( U )  = 1 - w ; / w 2 ,  

with wp the plasma frequency. (The perfect conductor corresponds to the limit up+ 00.) 

In this model all longitudinal modes (those with div E # 0 inside the medium, all such 
modes having frequency o = up) are totally decoupled from exterior systems, whence 
we ignore such modes from now on. 

In I1 we managed to deal only with overall-neutral systems (atoms or molecules), for 
the following reasons connected with the choice of gauge. The plasma and the 
electromagnetic field in mutual interaction were quantized, in 11, via their normal 
modes, in the special gauge where the scalar potential is zero, so that 

E = -A, 

div A = 0 

B = curl A ; 

for z # 0. 

This gauge is widely used in surface problems (see for instance Elson and Ritchie 1971, 
Marvin er a1 1976). But some modes induce a surface charge density v and, by Gauss’ 
law, a discontinuity in E, and A, at z = 0. Therefore div A has a G(z)-proportional 
singularity, and since div A is not everywhere zero, this is not the usual Coulomb gauge. 
On the other hand the standard Hamiltonian method, which tells one how charged 
particles are coupled to the quantized electromagnetic field, is formulated explicitly in 
the Coulomb gauge (Schiff 1968, Power 1964, chap. 6). Hence the standard formalism 
cannot be applied to our problem without further argument. In I1 we could sidestep the 
difficulty as regards overall-neutral systems, by appeal to the Power-Zienau transfor- 
mation to the coupling - E .  d, with d the electric dipole operator (Power 1964, chap. 8, 
Power and Zienau 1959, Woolley 197 1); but unfortunately this transformation does 
not, at least in convenient form, apply to charged systems. 

The present paper completes the argument of I1 by extending it to charged particles. 
In particular, we shall encounter the effects of relativistic retardation and quantum 
corrections on the so called ‘dynamic image potential’; (for a general non-relativistic 
introduction see Mahan 1973, or Brown and March 1976). The particle charge is 
denoted by e, the mass by m, the canonical position and momentum coordinates by R 
and P, and the velocity by U = k. Thus 2 is the distance of the particle from the 
interface. (The units are Gaussian, i.e. e2/hc  = 1/137 if e is the electronic charge; and 
we set h = 1 = c except when stressing the presence of A or c.) The particles are treated 
non-relativistically, but the fields obey Maxwell’s equations, so that relativistic retarda- 
tion is accounted for automatically; it is precisely such retardation which warrants 
continued interest in the problem, and makes the choice of gauge non-trivial. We shall 
work formally to second order in m-l .  This restricts one to second order in o, i.e. to 
second order in both the dimensionless parameters u / c  and u/w,Z.  Here it is useful to 
visualize the hierarchy of distances (in any realistic case): h/mc << o/o,<< c/o,; our 
approximations are valid in the region Z >> o/op, but without restriction on w,Z/c. By 
contrast, previous non-relativistic calculations of the dynamic image potential take the 
limit c + 00 from the outset, and are valid in the region h/mc << Z<< c/wp, but without 
further restrictions on o except u / c  << 1 (i.e. such calculations are then valid mathemati- 
cally, granted the physical simplifications of the model, whose most important limita- 
tion at small distances is its neglect of (spatial) dispersion). Thus, the present calculation 
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and previous ones complement each other in their domains of validity. The non- 
relativistic approach fully accommodates effects due to the inertia and consequent finite 
response time of the medium, while the present approach matches these to purely 
relativistic retardation. In the light of the theory we develop, a unified treatment is 
certainly possible; but it would be cumbersome, and not transparent enough for a first 
attempt. 

As in 11, we confine ourselves to particles which remain outside the medium; our end 
result is a position- and momentum-dependent effective Hamiltonian which operates 
on the particle wavefunction (though no longer on the state vector for field and 
medium). This type of approach to a related problem has been discussed in more detail 
elsewhere (Barton 1970). 

Paper I1 serves as a more detailed general introduction; we shall draw freely on its 
notation and results. Section 2 transforms from the gauge defined by (1.2) to the true 
Coulomb gauge, whose potentials, identified through primes, are determined by 

E = -A‘-grad 4’, 
divA’=O for all 2.  

B =curl A’; 
(1 .3 )  

The scalar potential 4’ enters as a second-quantized field operator on exactly the same 
footing as A‘. In the Coulomb gauge, the correct Hamiltonian H’ in presence of the 
particle can be written down at once. But the couplings which involve 4’ prove 
inconvenient in calculation; hence 9 3 performs a canonical transformation of H ,  which 
eliminates #J’ in favour of the unretarded (‘electrostatic’) image potential 

v,, = - e 2 / 4 z ,  (1 .4)  

and which, in all other terms of H‘, conveniently replaces A ’  by just the operator A in 
the more popular original gauge (1.2) already adopted in 11. Sections 4.1 and 4.2 
calculate the additive corrections to V,, to leading (second) order in e and in U ;  Q 4.3 
gives the asymptotic form of these corrections in several physically interesting limits; 
and Q 4.4 determines the domain of applicability of our approximations. In particular, it 
emerges that at low speeds ( U / C  << 1 )  and long range (w ,Z /c  >> 1) the dominant 
interaction is V,, itself. Section 5 summarizes the results, rewrites them in terms of 
particle velocities instead of momenta, and compares them to a recent paper by TomaS 
and SunjiC (1975),  where the contributions from some of the normal modes have been 
missed, resulting in a wrong suggestion as to the long-range behaviour of the interac- 
tion. 

2. Normal modes and couplings in the Coulomb gauge 

Consider the model plasma and the electromagnetic field in mutual interaction but in 
absence of any external particle. The Hamiltonian Ho of this system, and its normal 
modes using the gauge (1 .2) ,  were discussed in 11. Introduce a single index A to specify 
the modes, i.e. the type of polarization (s-polarized (s), p-polarized (p), or surface- 
plasmon (sp), longitudinal modes being ignored as explained in 0 1 ) ;  the wavenumber k 
parallel to the interface; the external wavenumber q normal to the interface; and for 
partially transmitted s or p waves (with q >w,) also the type (1) or (2 )  of mode. The 
appropriate combination of sums and integrals over all these labels is denoted by CA ; 
the mode frequency is wA (for s and p modes, w : = 0 2 = ( k 2 + q 2 ) ;  for sp modes, 
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0.: = G 2  = [&: + ka - (aut+ k4))”’]). Following 11, and dropping irrelevant zero-point 
energies, one has 

The U,, (U:) are the usual annihilation (creation) operators, obeying [U,,, U:,] = 8 A A , ,  and 
having the time dependence (e+””^‘) which is not shown explicitly; the A,+ are the 
mode functions given in I1 for sp modes and for s and p modes having q > wp (partial 
transmission), by Elson and Ritchie (1971) for q < up (total reflection), and in I for the 
perfect-conductor limit up+ 00. These functions are not displayed in the present paper. 

As explained in § 1, in principle we must start by re-expressing the modes in the 
Coulomb gauge (1.3), where 4f obeys Poisson’s equation: 

whence the normal-mode functions 4; assume the form 

Equation (2.2) is now replaced by 

the 4; are normed so as to obey (2.3) (A being already known at this stage), and A ’  is 
determined by 

E = -A = -A’-grad 4’. (2.6) 

(Specifically, the surface charge and the functions 4; vanish for s modes, and for 
p-modes of type (2) with q >up.) Note also 

with similar expressions for any potential in either gauge. In particular, we shall need 
the time integral of (2.6): 

A = A’+iV 1 (UA~;-U;~;*)/WA. 

H = Ho + e#’(R) + (P- eA’(R))’ /2m = Ho +P2/2m +Hi,,. 

(2.8) 

(2.9) 

When an external particle is present, the total Hamiltonian in Coulomb gauge is 

From now on, the argument R of the field operators will be suppressed. To see that 
(2.9) is correct, recall first (Schiff 1968, Power 1964, chap. 6) that in Coulomb gauge the 
Hamiltonian includes the integral d3rp(r)4’(r), where p is the sum of the surface 
charge density d ( z )  and the charge density e8(r -R) of the particle; at the same time 
the right-hand side of (2.3) is augmented by -47re8(r -R). The integral separates into 
three terms (all unretarded), as follows: (i) the self-interaction of the particle; this is a 
constant independent of R and P, and for our purposes we can drop it. (ii) Interaction 
of the medium with itself; this is subsumed into the gauge-invariant Hamiltonian Ho for 
medium plus field. (iii) Interaction between particle and medium; this is precisely the 
term e&f in (2.9), written in this asymmetric form purely for convenience, (+’(R) being 
the scalar potential at the particle due to the medium: note the absence of any factor 4). 
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We shall use perturbation theory (to order e2 and orders l / m  and l /m2)  to calculate 
the effective interaction operator between particle and medium; this kind of procedure 
is discussed in I and 11. The coupling -eP. A ' / m  by itself is easy to handle, since it 
enters to second order where it is already of order l /m2, so that further corrections of 
order l / m  in the energy denominators can be neglected; in other words these 
denominators can be approximated by (-oh); (see the comments in 0 1 and in 0 4.4 
about the accuracy). But the coupling e+' lacks this simplifying feature; therefore in 
practice it is incomparably more convenient to proceed via the canonical transforma- 
tion given in the next section. 

3. The canonical transformation 

The unwelcome operator 4' is eliminated from H' by a suitably chosen canonical 
transformation U. This idea has been widely used in fixed-source field theory (see for 
instance Wentzel 1949 or Barton 1963); it has also been applied to the system under 
discussion, though, as far as the writer knows, only in its non-relativistic version (see for 
instance Kanazawa 1961, Sunjit et a1 1972). We chose 

The commutation rules lead straightforwardly to the following results: 

e'S(Ho+e+') e-IS = Ho-e2 1 l+:l2/uA = Ho+ V,,, (3.4) 

where the last step, with V,, defined by (1.4), follows by direct evaluation once the 4: 
are determined as explained in § 2. One can anticipate this result by observing: (i) that 
for a strictly immobile external charge, i.e. in the limit m + a, the sum in (3.4) is the only 
interaction which survives, and that it itself is unaffected by taking this limit; and (ii) that 
in this limit the model displays perfect screening, as discussed further near the end of 
this section. Next, 

A 

e~Sp e-iS - - P-ieV C ( u A + ~ - u ~ + A * ) / w A  +$ie2 C (+:*V+:-+:V+;*)/W,~ 

=P- ieV 1 ( a A + : - a ~ + ~ * ) / u A .  (3.5) 
The last sum in the second expression vanishes; this can be seen either by explicit 
evaluation (by azimuthal symmetry under the integration d2k included in XA, and in 
view of the form (2.4) of the 4;); or more generally by invariance under time reversal T, 
since this term is an addend to P but nevertheless even under T. Finally, 

eisA'ePiS =A ' -e  1 (+:AI\*+c$:*A:)/wA =A ' ,  (3.6) 
where the sum vanishes for reasons similar to those just discussed. Now (3.5) and (3.6) 
entail 

elS( P - eA ') e-IS = P - e (A ' + iV C (aA+: - a:+:*)/o,, ) ; 
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but (2.8) identifies the right-hand side as just ( P - e A ) ,  whence our end result is 

H = H o +  V e , + ( P - e A ) 2 / 2 m  = H 0 + P 2 / 2 m +  Ves+Hint, (3.7) 

as promised in § 1. No approximations have been made so far. 
The Hamiltonian H is our starting point for calculations. V,, acts only on the 

particle wavefunction but not on the normal modes; the latter can be excited only 
through the interaction Hint= -eP.  A / m  + e 2 A 2 / 2 m .  For instance, if one aims to 
calculate the overall emission of photons and surface plasmons induced by charged 
particles, and if the effect of V,, on the particle motion is negligible, then one can safely 
start from (3.7) but with V,, omitted. Just this has been done recently by Marvin et af 
(1976). However, to describe the time evolution of the fields in such a process, correctly 
and without violating causality, the full Hamiltonian would be needed. 

The unretarded polarization of the medium is allowed for automatically by the 
transformation U ;  for instance, the ‘no-excitation’ eigenstate 10) of ( H -  Hint) = 
(Ho+ V,,) is given in terms of the ‘no-excitation’ eigenstate IO’) of (H’-H:nt) = Ho, and 
of the other eigenstates of Ho, by IO) = exp(-iS)IO’). 

That V,, happens to be the image potential for a perfect conductor merely reflects a 
peculiarity of our model plasma, namely that for a truly stationary charge it gives 
perfect screening. This in turn follows from the neglect of hydrodynamic pressure; it is 
implicit in the absence of any wavenumber dependence of the dielectric function (1 .  l), 
and in its pole at zero frequency. These features are not essential to the argument so far, 
and were adopted purely to simplify the calculations which follow. 

4. Perturbation calculation 

The effects of H,,, in (3.7) are evaluated by perturbation theory; to order e* they simply 
add to V,,, the unperturbed states being the eigenstates of Ho + P2/2m.  The calculation 
proceeds along almost the same lines as (for neutral atoms) in 11; we indicate only the 
outlines, and points where the technicalities differ appreciably. (We have checked by 
explicit calculation that for neutral atoms the present method reproduces the results of 
11.) As in I and 11, we reject systematically all (including divergent) terms independent 
of Z, and all contact terms proportional to S(Z) or its derivatives. Recall from I1 the 
notations w 2 =  k 2 + q 2 ;  

Q ( 4 ) = ( 4 2 - ~ 3 1 / 2 ,  (4.1) 

a2(s)  = q(q - Q), 

defined with a branch cut along the real axis between *up, and with Im Q > 0 when 
Im q > 0; also 

a2( iy)  = y[(y2+ w;)lI2 - y]; (4.2) 
and write P,f = P: + Py’, P: = P:. 

4.1. Second-order perturbation Ah(2) 

The second-order shift due to - e P . A / m  is approximated by taking the energy 
denominators as -wA, i.e. by neglecting recoil corrections. The accuracy of this step is 
discussed in 9 4.4. One finds, 

(4.3) 
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distinguishing the contributions from the three different kinds of normal modes. For 
A:2’ one obtains straightforwardly 

where the q-contour runs just above the real axis, i.e. just above the cut due to Q. The 
contour can be closed along the upper semicircle at infinity, and the q-integral is 
determined by the residue of the pole at o2 = 0, i.e. at 4 = ik: 

(4.5) 

The analogue of (4.4) for A:’ is 

(4.6) 

Actually one operator P3 should be written on the left and the other on the right of the 
P$proportional term, but for brevity we shall not always observe this. The q-integrand 
in (4.6) has a double pole at 4 = ik; it also has a pole at u2 = a’, whose contribution 
turns out precisely to cancel A:;’, in the manner familiar from 11. One finds eventually 

+ [2k (k t. U;)  ‘/2]$Pi}.  (4.7) 

Combining (4.6) and (4.7), changing to a dimensionless integration variable, and 
reverting to conventional units, one obtains finally 

4.2. First-order perturbation A“’ 
The first-order shift, i.e. the vacuum expectation value of e2A2/2m,  is 

A(1’= ( e2 /2m)  A IAA)2=A~’ ’+A~)+A$) .  (4.9) 

One finds 

(4.10) 
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This q-integrand has a cut, due to U - ’ ,  from q = ik to q = +im, and deformation of the 
contour yields 

By using J: dk 
yields 

dy . . . = dy J: dk . . . , the k-integration is performed first, and 

The p-contribution analogous to (4.10) is 

(4.11) 

(4.12) 

This q-contour cannot be deformed as for Ai1’, because the singularity due to w - 3  would 
lead to a y-integral diverging at its lower limit. The difficulty is circumvented as follows. 
Invert the order of integration, write dk k . , . = G, d o  w , . . , and try to perform the 
@-integration. Taking partial fractions one faces 

m 

(4.13) 

The crucial observation is that any entire function of q and in particular any constant 
emerging from this integration fails to contribute, since it gives a q-integrand wholly 
free of singularities in the upper-half q-plane. Thus, anticipating the q-integration, we 
have the equivalence (dropping a constant, albeit infinite): 

comparing this to 

J-; 4 2 / w 2  = 141 

we see that in (4.13) we may make the replacement 

q2/wz* -1 .  

After this replacement the original order of the integrations is restored, and instead of 
(4.12) one obtains 

(4.14) 

The q-contour can now be deformed as was done for A:’). The contribution from the 
pole at w 2  = a’ cancels A:;) as expected. The contribution from the branch cut due to 
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is dealt with as before. Combining (A:)+A$)) with A:’), and reverting to conven- -1 
U 

tional units, one obtains the end result 

4.3. Asymptotics 

A(’) and A“) are given above as Laplace transforms with respect to the dimensionless 
variable (2w,Z/c) .  Hence the non-relativistic limit c + 00 automatically coincides with 
the short-distance limit, and the perfect-conductor limit wp + CO coincides with the 
long-distance limit; but neither limit in one of these pairings is compatible with either 
limit in the other pairing. 

For small values of 2w,Z/c, the integrands in (4.8) and (4.15) are approximated 
asymptotically by expanding them, apart from the exponential, in descending powers of 
x. This yields 

+ [ 1 + (g’];~;] + (terms remaining finite as Z +  o), (4.16) 

(4.17) 

For large values of 20,Z/c, the asymptotic expansions are in ascending powers of x ,  

e2hw 
mc 

++x(termsof 0(1)orO(lnwPZ/c)asZ+0).  

and yield 

A(2)= - { p 3 [  ~ + L + o ( ~ ) ~ ] P ~ - [  1 - 2 - + O ( L )  C ’ 1  ] z P i ] ,  
4 m 2 c 2 z  w , z  w,z w , z  0,z 

(4.18) 

(4.19) 

4.4. Accuracy of the no-recoil approximation to A(2) 
In the energy denominators entering A(2) we have ignored recoil energes of the type 
-[(P- k)’- P 2 ] / 2 m  and similar q-dependent terms, and must now check under what 
conditions these are negligible compared to -U,,. The crucial observation is that in the 
regions dominating Laplace integrals like (4.5) and (4.7),  k is effectively of order of 
magnitude 1/Z;  similarly in the preceding q-integrals, 4 is of order 1 /Z .  (For instance, 
factors of k or 4 under the integrals can be replaced by a/aZ acting on the end result.) 
For simplicity we present the argument in terms of k alone, and correspondingly ignore 
any q-dependence of U,,. The short- and long-range regimes must be considered 
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separately, and we need the normal-mode frequencies quoted just above equation 

For small Z, i.e. large k - 1/Z, the s and p modes have oA = o -k. Then 
Pk/m << U, implies only v/c << 1 which is assumed anyway; and k2/m << o, implies 
h/mcZ<< 1, which is a trivial condition in practice since it demands only that 
Z >> (Compton wavelength). But for surface plasmon modes, oh = G - J&,. Then 
k 2 / m  << uA implies 2' >> ti/mup; since hwp is roughly comparable to typical atomic 
energies e2/uB (aB = h2/mee2 is the Bohr radius; me is the electron mass), this demands 
only Z >> (me/m)"2aB. Finally, Pk/m << U,, now implies 

z >> v/w,. (4.20) 

In cases of practical interest, (4.20) is the operative condition. 
For large Z, i.e, small k - 1/Z, all modes have frequencies 0, - k - 1/Z, and a 

repetition of the above argument demands only v/c << 1 and h/mcZ<< 1, which for large 
Z impose no new conditions. Thus we have substantiated the remarks about accuracy 
in 0 1: our results are valid to second order in v/w,Z but are exact in o,Z/c. 

(2.1). 

5. Summary and discussion 

5.1. Summary 

We have found that to the accuracy stated at the end of § 4.4 the behaviour of charged 
particles outside the medium is governed by the effective Hamiltonian 

(5.1) 
1 e 2  1 1 

He,=-P2--+A(1)(Z) +-P3F3(Z)P3 +-ql(Z)$Pi. 2m 4 2  2m 2m 

A") is given by (3.15), and its asymptotics by (4.17) and (4.19); the momentum- 
dependent terms (which constitute by (4.8), and their asymptotics by (4.16) and 
(4.18). Thus for short distances 

1 e' e2h Hefi = - P 2  - - + 
2m 4 2  21/24mo,Z3-4m 

and for large distances 

e2  ( P :  -; Pi) I 1 e' e2h He, =- P 2  -- + 
2m 4 2  4.rrmcz2-4m2c2z (5.3) 

Note that the Pi-proportional energy changes sign with increasing Z. (This term in (5.3) 
checks with the perfect-conductor result obtainable as a limiting case from Barton 
(1970, equatiocs (2.30)-(2.32)); in (5.2) it checks with calculations setting c + 00 ab 
initio (Sunjik et a1 1972, Ray and Mahan 1972), bearing in mind the question of sign 
discussed in Q 5.3 below. Similar checks are verified by the leading terms of A") in 
equation (4.19) (see I) and equation (4.17).) 

Inspection for factors of h, c, and op shows that A(') is a purely quantum correction 
vanishing as h -* 0; and that the momentum-dependent terms A(2) are classical retarda- 
tion corrections, due at small distances to the finite response speed of the medium, and 
at large distances to the finite value of c. 
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5.2. Orders of magnitude 

Denote the order of magnitude of P/m by U .  At short distances, lA'*)/A'2)l is of order 
ho,/mv', which in principle can be large or small, but most often will be small. 
Moreover IA(')/ V,,l is of order ( u / w , Z ) ~ ,  necessarily small in the domain (4.20), where 
V,, is consequently dominant. 

At long distances, 1A(1)/A(2)1 is of order hc /mv22  = (c /wp2)(ho , /mu2);  the first 
factor is small, and the second generally also small. But /A(')/ Ve,l is of order u2/c2 ,  i.e. 
small for all non-relativistically moving particles. 

Consequently, throughout the region 2 >> u / o P ,  the dominant term is Ves; and apart 
from very exceptional cases, the next most important energy is A(*), rather than the 
quantum correction A('). Hence it is worth considering a limit in which A(1) is dropped, 
and the remainder of Heff is regarded as a classical Hamiltonian with commuting 
canonical variables R and P. In some cases it may be possible to simplify still further by 
treating the particle as if it was moving along a prescribed trajectory; then He, yields 
information about the overall energy transfer to field and medium, while for a detailed 
account of the polarization one would have to revert to equation (3.7), as the first step of 
a Born-Oppenheimer treatment. 

5.3. Velocity dependence 

For the classical limit just envisaged it is instructive to express Heff in terms of velocities 
rather than momenta. Because the interaction A") is momentum dependent, it enters 
into the relation k = aH/aP; from (5 .1 )  one finds, to order e*, 

Note the opposite signs of the velocity-dependent interactions in (5.5) and the corres- 
ponding momentum-dependent interactions in (5.1). The same transformation gives 
the velocity-dependent counterparts of (5.2) and (5.3). 

5.4.  Comparison with other work 

The standard non-relativistic (c -* 00) and adiabatic (Born-Oppenheimer) expression 
for the total interaction of particles moving perpendicularly to the interface is (Sunjii: et 
a1 1972, Ray and Mahan 1972) 

1 "  e-2kz 
-2 lo dk 1 + 2 ( k ~ , / w , ) ~ '  

with possibly an upper cut-off irrelevant in this context. The integral in (5.6) embraces 
V,, and A(2), and for a dispersionless plasma derives wholly from surface plasmons. 
When expanded in powers of U , ,  the first two terms agree with (5.2),  bearing in mind 
the apparent sign change explained in the preceding subsection. Of course (5.6) 
continues to apply for 2s  v / o P ,  where our own no-recoil approximation breaks down. 
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TomaS and SunjiC (1975) have tried to generalize (5.6) to the relativistically- 
retarded domain 2 3 c/wp. They start correctly, and remain, in the Coulomb gauge, 
and drop A(1) as is appropriate in a classical approximation; but even in the relativistic 
calculation they follow Ritchie (1972) in retaining only the contribution from surface 
plasmons. To order U’, and for &,/c >> 1, their equation (48) implies the effective 
interaction 

+. . .). C --+-- --9- 
8wpZ2 2 c2 2 opZ 

But for large 2, the contribution from surface plasmons no longer dominates the 
contribution from s and p modes, so that this expression is unwarranted. Indeed 
comparison with (5.3) shows it to be wrong; the true dominant term is the elementary 
image potential -e2/4Z. 
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